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Abstract— Analyzing the big textual information manually is 

tougher and time-consuming. Sentiment analysis is a automated 

process that uses computing (AI) to spot positive and negative 

opinions from the text. Sentiment analysis is widely used for 

getting insights from social media comments, survey responses, 

and merchandise reviews to create data-driven decisions. 

Sentiment analysis systems are accustomed to add up to the 

unstructured text by automating business processes and saving 

hours of manual processing. In recent years, Deep Learning 

(DL) has garnered increasing attention within the industry and

academic world for its high performance in various domains.

Today, Recurrent Neural Network (RNN) and Convolutional

Neural Network (CNN) are the foremost popular types of DL

architectures used. We do sentiment analysis on text reviews by

using Long Short-Term Memory (LSTM). Recently, thanks to

their ability to handle large amounts of knowledge, neural

networks have achieved a good success on sentiment

classification. Especially long STM networks.

Keywords—Sentiment Analysis, Text Classfication, LSTM, 

Deep Learning 

I. INTRODUCTION

Sentiment analysis is that the computerized process of the 

higher cognitive process to an opinion a couple of given 

subjects from a transcription. in an exceedingly present 

generation, we create quite 1.5 quintillion bytes of information 

daily, sentiment analysis has become a key tool for creating a 

sense of that data. it absolutely was utilized by the businesses 

to induce key insights and automate every kind of process for 

their business development. Sentiment Analysis [1] is also 

called opinion mining. Sentiment analysis isn't only a 

sentiment mining but also contextual mining of text which 

identifies and extracts subjective information in source 

material and helping a business to know the social sentiment 

of their service, brand or product while monitoring online 

conversations. Sentiment Analysis is that the most used text 

classification tool that analyses an incoming message and tells 

whether the essential opinion is positive or negative. 

Sentiment analysis will be applied at different levels of scope 

like Document-level sentiment analysis obtains the sentiment 

of an entire document or paragraph. Sentence level sentiment 

analysis obtains the results of one sentence. Sub-sentence 

level sentiment analysis obtains the results of sub-expressions 

within a sentence. 

A. Why sentiment analysis is important?

It’s estimated that 80% of the world’s data is unstructured and

not organized during a pre-defined manner. Most of this

comes from text data, like reviews, emails, chats, social

media, surveys and articles. These texts are usually difficult

and time-consuming to investigate and understand. The

sentiment analysis system authorizes company to create sense

of this huge amount of unstructured text by automating

business processes, saving hours of manual processing [2] and 

getting actionable insights. 

Recurrent Neural Networks (RNNs) are one of the most 

prevalent architectures because of the ability to handle 

variable-length texts. Humans can't analyze from scratch 

every second. Any human can understand each word based on 

his understanding of previous words. He doesn’t throw 

everything away and start thinking from scratch again. His 

thoughts have persistence. Traditional neural networks can’t 

do this, and it seems like a speed process is coming. For 

example, imagine a human want to classify what kind of event 

is happening at every point in a movie. It’s not clear how a 

traditional neural network could use its reasoning about 

previous events in the film to inform later ones. Recurrent 

neural network addresses can face this type of issues. They are 

networks with multiple loops in them, allowing information to 

continue. Though RNNs are capable of modeling long 

sequential data theoretically they fail to represent long 

sequences in real time applications [3]. 

Recently, LSTM is most popular to deal with sentiment 

classification. LSTM is proposed by Hoch Reiter and Schmid 

Huber in 1997 and was refined and popularized by many 

people in the following work. They work tremendously well 

on large different types of problems and are now widely used. 

LSTMs are explicitly designed to ignore the long-term 

dependency problem [4]. Remembering information for a long 

time is practically their default behavior, not something they 

struggle to learn. All recurrent neural networks have the form 

of a chain of repeating modules of the neural networks. In the 

level of RNNs, this repeating module having a very simple 

structure, such as a single tanh layer. The IMDB benchmark 

dataset is used for our experimental studies that contain movie 

reviews that are classified as being positive or negative. 

An Example for positive and negative words 
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II. PROPOSED WORK 

Long short-term memory (LSTM) is a synthetic recurrent 

neural network (RNN) architecture employed in the sphere of 

deep learning. Unlike standard feedforward neural networks, 

LSTM has feedback connections.  

LSTM [5] networks are well-suited to classifying, processing, 

and making predictions supported statistic data since there 

may be lags of unknown duration between important events in 

a very statistic. LSTMs were developed to accommodate the 

exploding and vanishing gradient problems that may be 

encountered when training traditional RNNs. Relative 

insensitivity to gap length is a bonus of LSTM over RNNs, 

hidden Markov models, and other sequence learning methods 

in numerous applications. There are several architectures of 

LSTM units. a typical architecture consists of a cell (the 

memory a part of the LSTM unit) and three "regulators", 

usually called gates, of the flow of knowledge inside the 

LSTM unit: an input gate, an output gate and a forget gate. 

Some variations of the LSTM unit don't have one or more of 

those gates or even produce other gates. as an example, gated 

recurrent units (GRUs) don't have an output gate. 

 

 
 

LSTM with a forget gate 

The compact forms of the equations for the forward pass of an 

LSTM unit with a forget gate are: 

 

 
 

where the initial values are c0=0 and h0=0 and the operator 
o

 denotes the Hadamard product (element-wise product). The 

subscript t indexes the time step. In this model, σ is the 

sigmoid activation function, tanh the hyperbolic tangent 

activation function, Xt the input at time t, Wi, Wc, Wf, Wo, Ui, 

Uc, Uf, Uo are weight matrices to regulate the input and bi, bc, 

bf , bo are bias vectors. 

III. ARCHITECTURE OF PROPOSED NETWORK USED 

 

A. Raw Text 

We are using IMDB movies review [6] and Amazon Product 

datasets used to train and validate our models. In total, these 

datasets contain tweets labeled as either positive or negative. 

If it is stored in your machine in a text file then we just load it. 

Then we convert the text to lower case and remove 

punctuation. We have got all the strings in one huge string. 

Now we have to separate out individual reviews and store 

them in individual list elements. Like, [review_1, review_2, 

review_3……. review n].  

B. Tokenizer 

Tokenization is that the process of tokenizing or splitting a 

string, text into an inventory of tokens. One can consider 

token as parts sort of a word could be a token in a very 

sentence, and a sentence could be a token in a very paragraph. 

Tokenizing (splitting a string into its desired constituent parts) 

is key to all or any NLP tasks. there are no single right thanks 

to doing tokenization. the correct algorithm depends on the 

appliance. I suspect that tokenization is even more important 

in sentiment analysis than it is in other areas of NLP, because 

sentiment information is often sparsely and unusually 

represented a single cluster of punctuation like >:-( might tell 

the whole story. 

1. Create Vocab to Int mapping dictionary 

• In most of the NLP tasks, you will create an index 

mapping dictionary in such a way that your frequently 
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occurring words are assigned lower indexes. One of 

the most common ways of doing this is to use the 

Counter method from the Collections library. 

2. Encode the words 

• So far, we have created a list of reviews and index 

mapping dictionaries using vocab from all our reviews. 

All this was to create an encoding of reviews (replace 

words in our reviews by integers) what we have 

created now is a list of lists. Each individual review is a 

list of integer or floated values and all of them are 

stored in one huge list. 

3. Encode the labels 

• This is simple because we only have 2 output labels. 

So, we will just label ‘positive’ as 1 and ‘negative’ as 

0. 

• This class allows vectorizing a text corpus, by turning 

each text into either a sequence of integers (each 

integer being the index of a token in a dictionary) or 

into a vector where the coefficient for each token could 

be binary, based on word count, based on term 

frequency-inverse document frequency. 

C. Embedding 

Word Embedding [7] emerged from the field of Natural 

Language Processing (NLP) which is an intersection of 

Computer Science, Artificial Intelligence, Machine Learning 

and computational linguistics. Word embedding is a text 

mining technique of establishing relationship between words 

in textual data (Corpus). The syntactic and semantic meanings 

of words are realized from the context in which they are used. 

The concept of distributional hypothesis suggests that words 

occurring in similar context are semantically similar. Count 

based embeddings and prediction-based embeddings are the 

two broad approaches to word embedding. Embeddings 

capture relationships in language. Embeddings are dense 

vector representations [9] of the characters. 

Embedding layer converts integer indices to dense vectors 

of length 128. 

Input dimension: Size of the vocabulary, which is the number 

of most frequent words. 

Output dimension: Dimension of the dense embedding. It is 

the vector space in which words will be embedded. 

Input length: Length of input sequences which is max length. 

Word embeddings are dense vectors with much lower 

dimensionality. Secondly, the semantic relationships between 

words are reflected within the distance and direction of the 

vectors. it's a representation of text where words that have the 

identical meaning have an analogous representation. In other 

words, it represents words in an exceedingly system where 

related words, supported a corpus of relationships, are placed 

closer together. within the deep learning frameworks like 

TensorFlow, Keras, this part is typically handled by an 

embedding layer which stores a lookup table to map the words 

represented by numeric indexes to their dense vector 

representations. 

D. Embedding Layer 

An embedding layer, for lack of a higher name, maybe a 

word embedding that's learned jointly with a neural network 

model on a particular linguistic communication processing 

task, like language modeling or document classification. It 

requires that document text be cleaned and ready such each 

word is one-hot encoded. the scale of the vector space is 

specified as a part of the model, such as 50, 100, or 300 

dimensions. The vectors are initialized with small random 

numbers. The embedding layer is used on the front end of a 

neural network and is fit in a supervised way using the 

Backpropagation algorithm. This approach of learning an 

embedding layer requires a lot of training data and can be 

slow, but will learn an embedding both targeted to the specific 

text data and the NLP task. 

E. Using Word Embedding 

You have some options when it comes time to using word 

embeddings on your natural language processing project. 

1. Learn an Embedding 

• You may choose to learn a word embedding for your 

problem. This will require a large amount of text 

data to ensure that useful embeddings are learned, 

such as millions or billions of words. You have two 

main options when training your word embedding: 

• Learn it Standalone, where a model is trained to be 

told the embedding, which is saved and used as an 

element of another model for your task later. this is 

often a decent approach if you'd prefer to use the 

identical embedding in multiple models. 

• Learn Jointly, where the embedding is learned as a 

part of an oversized task-specific model. this is often 

a decent approach if you simply shall use the 

embedding on one task. 

2. Reuse an Embedding 

• It is common for researchers to make pre-trained 

word embeddings available for free, often under a 

permissive license so that you can use them on your 

own academic or commercial projects. For example, 

both word2vec and Glove word embeddings are 

available for free download. These are often used on 

your project rather than training your own 

embeddings from scratch. you have got two main 

options when it involves using pre-trained 

embeddings. 

• Static, where the embedding is kept static and is 

employed as a component of your model. this is 

often an acceptable approach if the embedding may 

be a good suit for your problem and offers good 

results. Updated, where the pre-trained embedding is 

employed to seed the model, but the embedding is 

updated jointly during the training of the model. this 

might be an honest option if you're looking to induce 

the foremost out of the model and embedding on 

your task. 

F. SoftMax 

SoftMax function calculates the chances distribution of 

the event over ‘n’ different events. generally, a way of 

claiming, this function will calculate the chances of every 

target class over all possible target classes. Later the 

calculated probabilities are helpful for determining the target 

class for the given inputs. the most advantage of using 

SoftMax is that the output probabilities range. The range will 

0 to 1, and also the sum of all the changes is adequate. If the 
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SoftMax function used for the multi-classification model it 

returns the chances of every class and also the target class 

will have a high probability. The formula computes the 

exponential (e-power) of the given input value and also the 

sum of exponential values of all the values within the inputs. 

Then the ratio of the exponential of the input value and also 

the sum of exponential values is that the output of the 

SoftMax function. it's Used for the multi-classification task 

and within the different layers of neural networks. The high 

value will have a better probability than other values. A 

neural network could also be attempting to work out if there's 

a dog in a picture. it should be able to produce a probability 

that a dog is, or is not, within the image, but it might do so 

individually, for every input. A SoftMax layer, allows the 

neural network to run a multi-class function. In short, the 

neural network will now be able to determine the probability 

that the dog is within the image, in addition, because the 

probability that additional objects are included in addition. 

 

SoftMax layers are good at determining multi-class 

probabilities, however, there are limits. SoftMax can become 

more expensive as the number of classes grows. In those 

situations, candidate sampling can be a more effective 

workaround. With candidate sampling, a SoftMax layer will 

limit the scope of its calculations to a particular set of classes. 

For example, when determining if an image of a bowl of fruit 

has apples, the probability does not need to be calculated for 

every type of fruit, just the apples. Additionally, a SoftMax 

layer assumes that there is only one member per class, and in 

situations where an object belongs to multiple classes, a 

SoftMax layer will not work. In that case, the alternative is to 

use multiple logistic regressions instead. Properties of 

SoftMax Function 

• The calculated probabilities will be in the range of 0 

to 1. 

• The sum of all the probabilities is equals to 1. 

• Used in multiple classification logistic regression 

model. 

• In building neural networks SoftMax functions used 

in different layer level. 

G. Algorithm 

A step-by-step process for how RNN can be implemented 

using LSTM architecture  

• Load in and visualize the data 

• Data processing - Remove Punctuation 

• Tokenize - Encode the words and labels 

• Training, Validation, Test Dataset Split 

• Define the LSTM Network Architecture (Building 

Model) 

• Training the Network 

• Testing (on Test data and User-generated data) 

 

H. Working of LSTM Network 

1. Take input the current input, the previous hidden 

state and the previous internal cell state. 

2. Calculate the values of the four different gates by 

following the below steps: - 

• For each gate, calculate the parameterized 

vectors for the current input and the previous 

hidden state by element-wise multiplication with 

the concerned vector with the respective weights 

for each gate. 

• Apply the respective activation function for each 

gate element-wise on the parameterized vectors. 

Below given is the list of the gates with the 

activation function to be applied for the gate. 

3. Calculate the current internal cell state by first 

calculating the element-wise multiplication vector of 

the input gate and the input modulation gate, then 

calculate the element-wise multiplication vector of 

the forget gate and the previous internal cell state 

and then adding the two vectors. 

 
4. Calculate the current hidden state by first taking the 

element-wise hyperbolic tangent of the current 

internal cell state vector and then performing 

element wise multiplication with the output gate. 

 
Just like Recurrent Neural Networks, an LSTM network 

also generates an output at each time step and this output is 

used to train the network using gradient descent. 

The only main difference between the Back-Propagation 

algorithms of Recurrent Neural Networks and Long Short-

Term Memory Networks is related to the mathematics of the 

algorithm. 

IV. EXPERIMENT RESULTS 

A. Summary of Dataset 

For our experimental study we use the IMDB and Amazon 

Product datasets. IMDB is the large movie review dataset and 

is a bench mark for movie review dataset that contains a total 

of 50,000 reviews out of which 25000 are positively polarized 

and 25000 are negatively polarized. Among the total available 

reviews, 50,000 reviews are used for training and the 

remaining 23500 are used for evaluating the performance of 

the trained model. The objective of this work is to identify the 

polarity of the given review that is whether the review given is 

of positive sentiment or negative sentiment. 

Table 1. Summary of the IMDB dataset  
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Dataset 
Total 

Samples 

Train 

Samples 

Test 

Samples 
Classes 

IMDB 50000 25000 25000 2 

Amazon 50000 25000 25000 2 

 

B. Layers of our model 

 

 
 

C. Model Architecture 

We initialize the word embedding layer with random 

values. Each word is represented with an embedding vector of 

size 100.  The top 6000 words are used in the vocabulary and 

rare words are removed from the dictionary to avoid 

unnecessary computations. During training, the 

hyperparameters that resulted in the best performance are: 

Dropout is applied with a rate of 0.2. Adam optimizer is used 

to optimize the model and sparse_categorical_crossentropy is 

used as the loss function. A batch size of 500 is adopted. 

Configuration 

of the model 
Epochs LSTM Units Accuracy 

Embedding 

Layer 

+ 

LSTM Layer 

+ 

Dense Layer 

1 128 56.14% 

2 128 75.91% 

3 128 88.13% 

4 128 93.44% 

5 128 96.16% 

6 128 97.67% 

7 128 98.59% 

8 128 99.11% 

9 128 99.36% 

10 128 99.56% 

 

V. CONCLUSION AND FUTURE SCOPE 

In this paper, we have proposed a sentiment classification 

approach based on LSTM for text data. Users from all over 

the world express and publicly share their opinions on 

different topics. Manual analysis of large amounts of such 

data is very difficult, so a reasonable need for their computer 

processing has emerged. Sentiment analysis processes 

people's opinions and attitudes toward products, services, 

politics, social events, and company strategies. Reviews 

(from sources such as TripAdvisor, Amazon, and IMDB) and 

social network posts (mostly from Twitter and Facebook) are 

categories of textual documents that are the most interesting 

for sentiment analysis. DL methods such as LSTM show 

better performance of sentiment classification with 85% 

accuracy when there are more amounts of training data. 

In future we are planning to extend this study to a larger 

extent where different embedding models can be considered 

on large variety of the datasets. 
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